DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence.
نویسندگان
چکیده
The CBF/DREB1 transcriptional activators are key regulators of plant freezing tolerance. They are members of the AP2/ERF multi-gene family, which in Arabidopsis comprises about 145 members. Common to these proteins is the AP2/ERF DNA-binding domain, a 60-amino-acid fold composed of a three-stranded beta-sheet followed by a C-terminal alpha-helix. A feature that distinguishes the CBF proteins from the other AP2/ERF proteins is the presence of "signature sequences," PKKP/RAGRxKFxETRHP (abbreviated PKKPAGR) and DSAWR, which are located immediately upstream and downstream, respectively, of the AP2/ERF DNA-binding domain. The signature sequences are highly conserved in CBF proteins from diverse plant species suggesting that they have an important functional role. Here we show that the PKKPAGR sequence of AtCBF1 is essential for its transcriptional activity. Deletion of the sequence or mutations within it greatly impaired the ability of CBF1 to induce expression of its target genes. This impairment was not due to the mutations eliminating CBF1 localization to the nucleus or preventing protein accumulation. Rather, we show that this loss of function was due to the mutations greatly impairing the ability of the CBF1 protein to bind to its DNA recognition sequence, the CRT/DRE element. These results establish that the ability of the CBF proteins to bind to the CRT/DRE element requires amino acids that extend beyond the AP2/ERF DNA-binding domain and raise the possibility that the PKKPAGR sequence contributes to determining the DNA-binding specificity of the CBF proteins.
منابع مشابه
Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding.
Transcriptional activation of sulfur amino acid metabolism in yeast is dependent on a multi-functional factor, the centromere-binding factor 1 (Cbf1) and on two specific transcription factors, Met4 and Met28. Cbf1 belongs to the basic helix-loop-helix DNA-binding protein family while Met4 and Met28 are two basic leucine zipper (bZIP) factors. We have shown previously that in cell extracts, the ...
متن کاملNon-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex
Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and ...
متن کاملArabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeatyDRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit (cold acclimationyCOR genesydrought stressysignal transductionyyeast)
Recent efforts have defined a cis-acting DNA regulatory element in plants, the C-repeatydehydration responsive element (DRE), that stimulates transcription in response to low temperature and water deficit. Here we report the isolation of an Arabidopsis thaliana cDNA that encodes a C-repeatyDRE binding factor, CBF1 (C-repeatyDRE Binding Factor 1). Analysis of the deduced CBF1 amino acid sequence...
متن کاملArabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance.
Many plants, including Arabidopsis, show increased resistance to freezing after they have been exposed to low nonfreezing temperatures. This response, termed cold acclimation, is associated with the induction of COR (cold-regulated) genes mediated by the C-repeat/drought-responsive element (CRT/DRE) DNA regulatory element. Increased expression of Arabidopsis CBF1, a transcriptional activator th...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1799 5-6 شماره
صفحات -
تاریخ انتشار 2010